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A three-dimensional model of inertial currents in a 
variable-density ocean 
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Pierce Hall, Harvard University 

(Received 4 June 1964) 

The three-dimensional equations for a general inertial ocean current are trans- 
formed so that the temperature rather than the vertical co-ordinate appears as 
an independent variable. A downstream power series expansion is made of the 
equations and boundary conditions, which involves an expansion about the mean 
potential vorticity. A general first-order solution is obtained for a boundary 
current between two level surfaces, one of no motion and one of uniform 
temperature. The case of constant potential vorticity is treated for arbitrary 
inviscid boundary conditions; it is found that the current can exist as a boundary 
layer only if the open ocean geostrophic drift is westward everywhere in the 
depth interval. This result is extended to arbitrary potential vorticity distribu- 
tions by an asymptotic analysis in physical space. 

1. The inertial ocean current 
1.1. Introduction 

Inertial currents and jets are an important and isolatable feature of the theory of 
the general circulation of the oceans (e.g. Stommel 1958; Greenspan 1963; 
Robinson 1963). By such a current is meant a flow in which the vertical com- 
ponent of vorticity relative to the rotating earth is comparable to the planetary 
vorticity (twice the vertical component of diurnal rotation). Since the current 
is a narrow region of relatively intense flow, the relative vorticity is dominated 
by the cross-stream gradient of the downstream velocity component. Con- 
sistently, the divergence of advective flux is important only in the cross-stream 
momentum balance. The downstream component is in geostrophic balance, but 
the relevant pressure gradient is much larger than that characteristic of the 
geostrophic drift of the fluid surrounding the current. Since the latter gradient is 
characteristic of the overall oceanic driving forces, the current is a region of free 
flow, driven by a mass flux through its lateral boundaries. 

Previous studies of inertial currents have been essentially of a two-dimensional 
nature, and density variation has been modelled in a two-layer approximation. 
In the present study a model appropriate to the three-dimensional flow in an 
ocean of continuously variable density field is postulated. It is assumed that the 
Boussinesq approximation is valid and that the motion is adiabatic, i.e. the 
density field is merely advected in the current region. A mathematical frame- 
work is evolved for the study of general boundary and free jets in which the 
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effects of bottom topography are included. A particular problem is then studied 
in detail: the effect of density gradients upon the boundary current with N-S 
axis in the presence of a variable Coriolis parameter (p-effect). It is hoped that 
the present model will not only provide a basis for the problems mentioned here, 
but may also be logically extended to provide a systematic framework for the 
investigation of inertial jet instability and the exploration of momentum and 
vorticity transfer with the solid earth. 

1.2. Equations of the model 

Let (x, y, z )  represent respectively the cross-stream, downstream, and vertical 
direction. A non-dimensional density anomaly is defined byp = po( 1 - s) ,  whence 

(1.1) 

in terms of the apparent temperature T* - TZ = (T - To) - @/a) (8 -Elo) (where 
a is the coefficient of thermal, and b of haline, expansion). Under standard 
notation, the conservation of momentum, mass and density flux is expressed, 
consistently with the assumptions discussed in the preceding section, by 

s = 1 -pipo = a(T* - T$),  

-fv+-p, 1 = 0, 

Po 
1 

PO 
uv, + VVU + ZDU, + f u  + - p g  = 0, 

1 

Po 
-sg+-p, = 0, 

(1.3) 

u,+v,+w, = 0, (1.5) 

(1.6) 

(1.7) 

us, + us* + W S ,  = 0. 

f (x, y) = fo + ~ ( C O S  Oy - sin Ox), 

Under the P-plane approximation the Coriolis parameter is expressed by 

where 0 is the clockwise-positive angle of deviation of the mean jet axis from the 
northward direction. Usually, but not always, the cross-stream variation must 
be neglected for consistency with the scale-ratio expansion implicit in the form 
of equations (1.2) and (1.3). 

To determine the inertial current the following boundary conditions must be 
specified: the normal velocity and density distributions at the inlet and a t  the 
sides, as well as the kinematical conditions of vanishing normal velocity at the 
sea bottom and surface. Let y = 0 be the inlet; then it is required to specify 

v(x, 0,zL 4x, 0 , z ) .  (1.8) 

If the jet is free, i.e. if both the right- and left-hand regions of the current are 
open ocean regions, then we must require that 

~ - f U * ~ ( y , z ) ,  v,u~-+O, ~ + S * ~ ( y , z )  as x++co. (1.9u) 

Furthermore, the asymptotic normal flow must be constrained to satisfy (1.3) in 
the geostrophic form. Together with (1.4) this implies the thermal wind 
equations, (1.9b) 
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so that U and S may not be chosen completely independently. In  terms of 
boundary-layer analysis, condition (1.9 b)  accomplishes a smooth joining of the 
boundary-layer flow (the inertial jet) to the flow outside of the singular region 
(the open ocean). If, however, the jet is not entirely free but is bounded on one 
side (at x: = C ( y ) )  by a continental land mass then one of condition (1.9a) is 
replaced by (1.10) 

The sea bottom is taken to lie a t  z = B(x, y) and the sea surface, assumed undis- 
torted, at  z = H. Then 

- U ( X ,  y, B)  + U ( X ,  y, B )  B, + ~ ( 2 ,  y, B)  B, = W ( X ,  y, H )  = 0. (1 .11)  

This complet,es the statement of the problems to be considered. 

2. Formulation of the problem in temperature space 
2.1. Transformation to a quasi-Lagrangian co-ordinate 

A direct attack on the mathematical problem posed above is almost prohibitively 
difficult, especially because of the non-linear form of the three-dimensional 
advection of momentum and density. However, if the stratification is every- 
where stable (s, a monotonic, non-vanishing function of z )  equation (1.6) suggests 
that the conservationequations will have simplerform if horizontal differentiation 
is carried out along surfaces of constant density anomaly (Starr 1945). Let 
( x ,  y ,  s) be independent variables and z a dependent variable. Then equations 
(1.2)-( 1.6) transform to - fv+rI ,  = 0, (2.1) 

uv,+vv,+fu+ IT, = 0, (2.2) 

g z +  rIs = 0, (2.3) 
(uz,),+ (v=.,), = 0, (2.4) 

(2.5) - U, + uz, + vz, = 0, 

where subscripts now refer to partial differentiation in the new set, i.e. 
u, = ( a u / a x ) ,  s, etc. Here the function II = p/po - gsz conveniently replaces the 
pressure as an independent variable. 

The advantages of the temperature space co-ordinates are the two-dimensional 
form of the momentum advection in ( 2 . 2 ) ,  and the appearance of the vertical 
velocity directly and only in (2.6) so that w may be found as a subsidiary calcula- 
tion after (u, v, z, I T )  are known. Mass-continuity appears non-linearly, but the 
two-dimensional form of (2.4) allows the definition of a stream-like function, viz. 

uz,  = - @  76' vzs = @r, (2.6) 

for the product of the horizontal velocity and the inverse stratification, 

A difficulty of the present system is the cumbersome non-linear form, taken on 
by boundary conditions at level surfaces, e.g. the second of (1.11). 

t In  the two-layer models of Charney (1955) and Morgan (1956), the stream-like 
function involves the product of horizontal velocity and upper-layer depth, D, and is 
usually interpreted as a transport-function. But the role of D is also to define the strength 
of the stratification in a two-density model, and this interpretation is apparently more 
relevant here. 
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2.2. First integrals of the motion (conservation of potential vorticity) 

The integral theorems of the two-layer models may be generalized to three 
dimensions, the relevant quantities being conserved along a path of constant 
values of both the stream-like function and the density. Cross-differentiation of 
(2.1), (2.2) and substitution of t,he horizontal divergence u, + v,/ from (2.4) yields 

Hence by (2.6) v,+f = Z , P ( $ , S ) ,  (2.7) 

where P is an arbitrary functional of its two arguments. Equation (2.7) is the 
conservation of potential vorticity. 

A Bernoulli integral is obtained upon integration of the sum of (2.1) and (2.2) 
after respective multiplication by u, v, viz. 

(2.8) 

But if (2.8) is differentiated with respect to x at constant s ,  and the geostrophic 
equation (2.1) is applied, upon comparison with (2.7) it is found that 

$v2+ II = B($, s) .  

as($, 4IW = P($, 81, 

so that the potential vorticity and Bernoulli integrals (as in the two-layer case), 
are not independent. It will be convenient to employ (2.7), and (2.1) and to 
ignore (2.8). 

3. Development of solutions for the complete current 
3.1. The doujnstream expansion 

Interest in the subject of inertial currents first arose when Stommel showed that 
a meaningful model of a Gulf-Stream region results from the assumption that the 
potential vorticity in a layer of variable depth is an absolute constant (Stommel 
1958, p. 109; Robinson 1963, p. 154). The subsequent exploration of two-layer 
models has shown that inertial currents can exhibit a variety of interesting 
phenomena when the potential vorticity is a slowly varying function of its 
argument. This fact will be exploited into a formal expansion procedure about 
the mean value of the potential vorticity in the region of interest. 

That such a procedure will facilitate solution can be seen by noting that if in 
(2.7) P(+,s) is a function of s alone, (2.7) together with the geostrophic and 
hydrostatic equations (2.1) , (2.3) provide three linear equations for the variables 
v, KI, x .  The u, w fields can then be computed from (2.2), ( 2 . 5 ) ;  but the forms which 
result contain in general products and ratios of infinite sums of fundamental 
separated solutions in the x ,  s co-ordinates, and also contain the co-ordinate y 
parametrically. To apply the boundary conditions (1.11) (and possible (1.10)) is 
prohibitively difficult. This difficulty can however be simply removed by the 
device of a power series expansion in the downstream co-ordinate, y. The type 
of downstream variation accessible to such an expansion can easily describe 
phenomena of interest. 
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It is convenient a t  this point to  introduce non-dimensional variables and 
parameters. The flow is characterized by U,, (a typical value of the entrainment 
or ejection rate Uo3(y, x ) ) ,  Ap (a measure of the density difference from bottom 
to surface), H (the niean depth), and f o  (the value of the Coriolis parameter a t  the 
origin). Let 

Note that the jet width has been scaled by the radius of deformation rather than 
by the width scale appropriate to the two-dimensional jet, (1&//3)&. I n  the two- 
layer model these lengths are identical; here they are independent. The arbitrari- 
ness thus implied is reflected in the non-dimensional form of the Coriolis 
parameter, 

f (3.2) 4 = - = 1 +pt+p*r = Qo+/3”r, 
f 0  

where 

The remaining dependent variables u., v, ui, II, II. are non-dimensionalized respec- 
tively by L(,, (ApgH/po)&, Uo fo(poH/Apg)*, ApgHlp,, gH2/fo; the potential vorticity 
functional P, by Apfo/poH. The symbols, u, v, w, II, P will be retained for the 
non-dimensional variables (which will be recognized as such by their non- 
dimensional arguments). The choice of scaling is such that no parameters (other 
than p*, @ in 4) appear in the non-dimensional forms of equations (2.1)-(2.7). 
The neglected inertial terms in (2.1) are simply O( Ugpo/ApgH) compared to a 
retained term. 

The downstream expansion is now made by writing all fields as power series 

in 7, e.g. m 

The result is (2.1) --f -$ovo+IIg = 0, (3.3) 

+p*vo+ rrq = 0, (3.4) 

(3.5) 

u&. 
i = O  

uovoc + VoV1 + $ouo f n, = 0, 
(2.2) --f 

(2.3) 3 

Physical consistency requires the simultaneous determination of expansion 
coefficients of different indices, as can be seen immediately from the form of the 
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equation. The equations (3.3)-(3.13) will be of interest here. The potential vor- 
ticity integral expands as 

P($.(5, 7, @)> 6 )  = P($.(k-, 0, 0) + P p K ,  O , @ ,  0) 7 + +q,](?m, 0, @, 0) r2 + . . . ; 
but el = PW?p q?) = P$@',,+P$& 
whence 

p = p O ( $ O i  0) + PZ($0>0) $17 + P I W O >  8) $2 + PIZ($& 0) 11.3 &Iz + 9 * .  9 

where the PN($o(@, <), 0) are a set of independent functions defining the potential 
vorticity distribution of the jet. Thus 

vat + $0 = COG, (3 .14a)  ju,,+B" = C00pI$Z+c18p0* (3.14b) 
(2.7) -+ 

Boundary conditions, e.g. the first of ( 1 . 1  l), require consistent transformation 
W 

and expansion. 0&, 7) = bi ( ( )q i ,  the temperature a t  the surface 
i = O  

where u, v have the same argument as w, and a prime indicates total differentia- 

(3.16 a)  

bl(f) w08(5, b O ( 6 ) )  + w l ( < , b O )  = u O B ; +  ( b l u O O + u l ) B ~ f ~ v O B 2 + ( b l v O O + v l )  Bl 

(3.16b) 
to O(72). 

3.2. The boundary current with N-S axis 

To illustrate the general procedure, consider a three-dimensional form of the 
Gulf-Stream problem prevalent in ocean-circulation theory. Let 0 = 0,  
vo = zoo = $o = 0, and ?\,(O, 0) = P$(0). Aninitial calculation of $(@, no(@ may 
be made from (3 .6)  and (3 .14a)  in the form $@Pg(6) = 1 .  The velocity field 
uo, vl, ujl is determined simultaneously with 6, IT, (and $1) from (3 .4 ) ,  (3 .5) ,  
(3 .7) ,  (3 .10 ) ,  (3 .11) ,  (3.14b). The pressure function ITl satisfies a linear second- 
order equation (in general with non-constant coefficients), 

'166 f p! IT180 - p"0" p: ITl = -P*? (3 .17)  

and the related fields are given directly by 

uO = - IT,, '1 = nl,, C1 = - I T I O ?  $1 = nl/e, w1 = n1n186- nlOnl('. 

(3.18) 

Note that to this order the cross-stream component uo is computed geostrophic- 
ally, although the inherent non-linearity of the system is essential to produce 
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the II,-equation (a quasi-geostrophic approximation in meteorological termi- 
nology). This occurs because vo = 0; u1 is not computed geostrophically. 

Consider a straight coastline at  6 = 0 and a flat bottom at 5 = 0. By (3.18), 
(1.10) implies II,(o,O) = 0; (1.9) is to be satisfied by requiring I I , ( ~ , B ) + I I , " ( O )  
as c+co, where II," is any solution of (3.17) with the first term absent. Equation 
( 3 . 1 6 ~ )  is identically zero. Since cot = BOt = 0 the first of (3.15) implies 
b o ( [ )  = boo (a constant), whence (3.16b) by the last of (3.18) yields 

IIIIIlot- IIlOIIl5 = 0, when 0 = boo. (3.19) 

The non-linear condition (3.19) may be integrated in 6,  i.e. 

lnIIl-lnIIIO = const., 

Or nl(5, boo) = konlo(S, boo), ko = niO(boo)/n?e(bd9 ( 3 . 3 0 ~ )  

a linear form. An identical treatment of the second condition of (1.11) at = 1 
yields 

(3.20 b )  

where co(hoo) = 1. 

nl(62 hoo) = klfllG-9 boo), Ll  = ~?(hoo) /~%hoo)  9 

Equation (3.17) and its boundary conditions allow separation of variables. Let 
00 

Hl(O,k3 = nw) + z ane-hnc flln(0), 
n=O 

where IIF is any solution of 

II,"'' - (P!/G3) II? = -p*/p:, (3.21) 

P: II;, + (A: - PgP!2) I l l ,  = 0, ( 3 . 2 2 ~ )  

~ l n ( b 0 0 )  - ko n;@Oo) = nln(h00) - kl Ul(h00) = 0, (3.22b) 

which serve to determine the eigenfunctions and eigenvalue spectrum A,. Then 
the a, are fixed by the condition 

and Ill, satisfies 

co c a,rI,,(O) = - rIF(0). 
n = o  

(3.23) 

The existence of the inertial boundary current requires real eigenvalues (A: > 0 to 
ensure exponential decay at the seaward edge of the jet).? 

In  general all the eigenfunctions are required by (3.23) so that all the A, must 
be real. This condition selects a class of solutions of (3.21) which may couple 
with an inertial current to satisfy the requirement of no normal flow through 
8 continental boundary. The determination of this class for a given set of Pi: 
is the first question of interest; the structure and properties of the various 
inertial jets required by the allowed distributions of geostrophic entrainment or 
ejection at  the seaward edge, is the second. Two requirements govern our 
development: (1) the description of real oceanic jets, and (2) the understanding 
of such naturally occurring jets to be afforded by recognizing their place within 
a general framework of solutions. 

If the eigenvalue is complex then the condiiion is that the positive part be real. In 
a variety of examples treated to date only purely real or imaginary eigenvalues have 
arisen, but we have not proven a theorem. 
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P!(O) determines the basic stratification of the system, e.g. if a thermocline 
structure is to be described by an e-fold decay of temperature within a depth d of 
the surface, then 8 = 1 - e-gold and P: = l/lObs = (1 -8) jd .  On the other hand 
the thermoclined flow will contain certain features in common with flows which 
imply simpler versions of equations (3.21), (3.22), and these will be explored first. 
Thus let the Pi, be constants, i.e. P: = 1, P! = 7 p*. The former choice implies 
a uniform basic stratification c0 = 8 ;  thus boo = 1, hoo = 0. The choice of Pr 
implies (without loss of generality) that  the particular solution of (3.21) is a unit 
barotropic mode to the east or west (UT = k 1).t  Consider now the flow in which 
the horizontal velocity vanishes at the bottom, and the temperature remains 
constant at t,he top. Then k, = 0, k , + m  and II,(<, 0) = II,&, 1 )  = 0. For 
P! = -/3*, the relevant solution of (3.21) is 

rIy = - u,m = - 1 + cosp*q8- l)/cosp*k (3.24) 

The appropriate complete set of eigenfunctions is I I T  = cos gnr(8- I), 
n = 1,3,5, . . .. Upon substitution of this form, ( 3 . 2 2 ~ ~ )  becomes the characteristic 
equation A: = (&wr)2 - p*. The lowest eigenvalue A: = in2 - p*, so the condition 
for the existence of the inertial boundary current is /3** < &r. From (3.24) it is 
seen that the allowed flows U r  are monotonic functions of the depth and are 
everywhere westward. Thus the two-dimensional condition of westward geo- 
strophic drift (Carrier & Robinson 1962) obtains in the example. The complete 
solution for the jet velocity distribution is given to O(r2)  by 

nr 
n=O 2 

m 

v = - 7  h,ancos-(O-l)e-~n~, 
(3.25) 

The case P! = +p* has also been solved; U? is again everywhere westward and 
develops a boundary-layer behaviour near 0 = 0. 

3.3. Constant potential vorticity 

In this section an investigation is made into the general dependence of the 
boundary jet solutions upon the parameters k,, k ,  which characterize the geo- 
strophic drift. This will be done for the simplest choice of potential vorticity 
distribution, Pg = 1,  PR,o = 0; i.e. when P(@, 8) is an absolute constant. The 
solution of (3.21) is 

HT = p* [ -- 82 + '-'' ( O + k , ) ] ;  
2 l + k o - k ,  

(3.26) 

the particular solution is an eastward flow which increases quadratically from 
the bottom. Since k, and k, are arbitrary the flow may be unidirectional to the 
east or west or may change sign once or twice in the interval ( 0 , l )  of 0. Since 
(3 .22~~)  has constant coefficients, the solution may be written 

IIln = a,sinh,O+b,cosh,O. 

t This flow may furthermore be regarded 8s the extension to three dimensions of  the 
'simple wind-system' flow discussed by Morgan (1956). 
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Application of the first of conditions (3 .223)  at 8 = 0 yields b,  = koAna,,. From 
the second of (3 .22b)  at 8 = 1 there results the characteristic equation 

sinh,(l +k,k lA;)  = (k , -k , )h ,  C O S ~ , .  (3 .27)  

The problem under consideration may be shown to be of Sturm-Liouville 
form with A: as the eigenvalue. Therefore A; is real and A, is either real or 
imaginary. To find restrictions upon k,, k, to ensure the existence of the inertial 
boundary layer, it is sufficient to determine the sign of the lowest eigenvalue A:. 
Assume that A, = iy, y real. Then by (3 .27)  

(3 .28)  

FIGURE 1.  The (ko,  k,)-plane. In the unshaded regions, a boundary layer can exist; in the 
shaded it  cannot. Existence occurs along the axes except for k ,  = 0, 0 < k ,  < 1 and 
k1 = 0, - 1 < k, < 0. Some profiles of the velocity U y  typical to the different regions 
are sketched, but various other profiles are possible (see, for example, (3.26) ff.). 

Since (3 .28)  is unaltered when y -+ - y, the values of k,, k, for which F ( y )  inter- 
sects tanh y may be sought for y 3 0. The result is shown in figure 1. I n  the first 
quadrant k,, k, > 0 and F changes sign about the singularity at ym = (knkl)-h. 
If k, > k,, F ( y  > y m )  > 0 and P intersects tanh y. If k, < k,, F ( y  > ym) < 0 and 
an intersection will occur for y < ym only if F ( y )  rises less rapidly from zero than 
tanhy does. Expansion for small y ,  

tanhy = y(1-$y2+ ...), F ( y )  = ( k 1 - k , ) y ( l + k , k l y 2 +  ...), 

shows that no intersection occurs for k, - k, > 1. I n  the second quadrant F is 
always positive and has a maximum a t  yAIr = (-k,k,)-*; F(y,,) = r + r - l ,  
r = ( - k,/k,)&. Since dF/dr = 0 when T = 1, the minimum value of the maximum 
of F is 2 .  Thus F always intersects tanh which asymptotes to 1. The behaviour 
in the third quadrant is similar to the first; in the fourth quadrant F < 0 always. 

The character of the solution (3 .26)  is illustrated by sketches of typical velocity 
profiles (Vk  in the various regions of the (k,, k,)-plane, figure 1.  The condition 



220 A. R. Robinson 

that an inertial jet be capable of allowing the geostrophic drift to satisfy the 
continental boundary condition is that the drift be everywhere westward. The 
condition is not upon the geostrophic transport; no part of the profile may be 
eastward. Any distribution of purely westward flow consistent with constant 
potential vorticity is allowed. 

4. Interaction of boundary current with geostrophic drift 

The requirement of westward flow obtained above is of particular interest when 
considering the role of inertial currents in the general ocean circulation. It is 
important to know if the condition holds for non-constant potential vorticity 
distributions. The question has been explored (Greenspan 1963) for a homo- 
geneous density model with variable bottom depth, and for a two-layer model 
with the lower layer at rest. Here the effects of stratification alone will continue 
to be isolated by retaining B(x,  y )  = 0. However, the problem is fundamentally 
a non-linear one, and both mechanisms which may produce an 'effective-p', 
topography and stratification, must be explored simultaneously. This problem 
has been investigated and the results will be reported subsequently. 

The development in $92 and 3 above has been pointed towards obtaining 
solutions for the entire jet region. To inquire into the interaction of the current 
with the open ocean drift it  is simpler to restrict attention to the seaward edge 
of the boundary current, i.e. to perform an asymptotic analysis in the boundary- 
layer variable. A linearization may be made about the flow a t  infinity. Dimen- 
sional dependent and independent variables and the (x, y ,  z )  co-ordinate system 
will be used. Let u = U ( y ,  x )  +p(x,  y ,  z ) ,  s = S(y, z )  + ~ ( x ,  y ,  z )  where the super- 
script co has been dropped. Then since p, v,  w ,  C+ 0 as x + c o ,  these fields are 
small quantities at  the boundary-layer edge and their squares may be neglected. 
From ( 1.2), (1.3), (1.5) an asymptotic vorticity equation is 

4.1. Asymptotic equations for the seaward edge 

uv,, + pv  - fw, = 0, 

and by (1.2), (1.4), (1.6), (1.9b) the vertical velocity is 

J w = - ( X v -  UV,). 
S fJ ,  

Thus v satisfies 

(4.2) 

(4.3a) 

U,v - Uv, = 0 at x = 0, H .  (4.3b) 

Note that the y-dependence of ( 4 . 3 ~ ~ )  is parametric and that the coefficients 
are independent of x, whence the system is separable. Let 

v (x , y , z )  = CAn(y)e-zn(v)v,(z). (4.4) 
n 

The coefficients A ,  are in principle to be determined by a coupling of the 
asymptotic fields to a form of the solution valid inshore, but (4.3) serves to 
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determine the eigenvalue spectrum 1, and thus solves the existence problem in 
general. Consider the case of quadratic drift and linear stratification of the open 
ocean. With S,, = 0,  U = @6(1+ </c), [ = ( z - zo ) /H ,  (4.3) under (4.4) becomes 

V ' n K  + [.. + <( 1 + r l  CIc) = O7 

where A,, = gH2Sa/f2, x = (gH2X,/f2)  (PIU), and I' = x- 3/c. The three para- 
meters defining the drift, @, x,, c as well as S, are regarded as arbitrary functions 
of y. The level z, may lie within or without the interval of interest. 

To relate to previous results, the case of constant potential vorticity (k) may 
be distinguished in the present context. As x+co (2.7) transformed to physical 
space becomes S, = k / f ,  or S,, = - kpP2. Upon insertion of this expression into 
the curvature of the drift obtained from differentiation of (1.9 b), there results 
U,, = g/3k/f3; C i z  = 2@/H2e, whence x = 2 /c  or r = 0. 

4.2. The westward drift condition 

To determine the lowest eigenvalue A, of (4.5) a variety of calculations have 
been made for various ranges or values of the parameters. Some exact solutions 
have been found, and variational and perturbation techniques have been 
applied. A, has always been found to be real, corresponding to pure real or 
imaginary A,. However, the physical results obtained can be summarized by 
merely considering the solution obtained by direct power series expansion about 
the regular singular point, 6 = 0. Good accuracy can be expected for the lowest 
eigenfunction v,. The solution for [ > 0 can be written (with subscripts sup- 

v = C. (ai+biln$P, (4.6) 
pressed) 00 

i = O  

where 
a2 = --( 1 3  [5r (1 -L) +A]a,+ Fal] ,  

3 

a,, and a, are arbitrary, a2 and a3 have been given explicitly to expose the coupling 
of A with a, and a,, and the bi are related linearly to a,. Convergence is indicated 

It is instructive first to consider z, = 0, so that the open ocean drift is purely 
baroclinic, i.e. it  is zero on the sea-bottom and is unidirectional. Here a, = bi = 0 
and a first approximation is obtained by satisfying the sea-surface condition 
with an>* = 0. The result is 

for 6 < Ic I  > 1, Irl < 1. 

Note that x has the sign of 4?l (which is also the sign of 77). If /3 = x = 0, A = 0;  
there is no directionality condition on U but, since the lowest eigenfunction is 
x-independent, a possible modification of the flow at co is indicated. Further 
interpretation cannot be made without an evaluation of the Ai. If x differs 
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slightly from zero A has sign opposite to the sign ofx,  since $ > l /c  always. The 
conditions II’l < 1, IcI > 1 imply x < 3 so that the x 2  term can never dominate 
(4.7). Thus 42 < 0 or a westward geostrophic drift is always required for the 
existence of a boundary-layer. It is important to note that the case of constant 
potential vorticity, I’ = 0, is imbedded in these results (rather than being a 
special or limiting case). Thus the conclusions of 3 3.3 may be anticipated to be 
generalizable. To check the accuracy of the qualitative results of (4.7) a numerical 
calculation for some typical values of A has been made to a higher order of 
approximation (for a4 +- 0). An accuracy of about 15% is indicated for (4.7). 

The westward condition on unidirectional flow does not appear to be particular 
to the forms of 77, S which led from (4.3) to (4.5). As first pointed out to me by 
Mr S. L. Spiegel, the separated form of (4.1) may be integrated directly over the 
depth interval to yield 

(4.8) 

Now it is usually the case that v, will have no node in the interval, thus U < 0 for 
A: > 0 if U is of one sign. If this plausible result is accepted, then the case that 
U change sign in the interval becomes of great interest, i.e. is westward flow 
allowed a t  any level? 

To explore the case that U has a single zero within the interval, choose 
0 < z, < 1 and let q = (1 - z,)/H, p = 1 - q. An expansion valid for c < 0 obtains 
similar to that of (4.6) by taking In 161; the two forms of the solution are joined 
across g = 0 by the requirement that the vertical velocity w be continuous. If 
terms O(c4) are retained in both directions, after satisfaction of the boundary 
conditions at 5 = q,  -p there results the characteristic equation for the two 
lowest eigenvalues 

Q = +p2q2(p + q)  + +p2q21’(lnp - lnq), 

R = +(P3 + P3) + X k l ( P 2  - q2) + [;P2!12(P - 4 )  (InP -1n q) 

+ &p2q2(q +p)] I? + +p2q2(ln q - lnp) 

An investigation has been made of the signs of Q, R over the allowed ranges of 
p, I?, c. It is found that RlQ > 0 always. Since this ratio is the negative of the 
sum of the roots of (4.9), A, < 0 if A, real. Numerical calculation of A, (r, c) for 
q = 0.1,0.5,0.9 have been performed and real, negative A, found in every case.t 
It is concluded, therefore, that eastward geostrophic drift is entirely forbidden, 
everywhere within the depth interval if an inertial boundary current is to exist. 

Care must be exercised in the interpretation of the results obtained here in the 
theory of the general ocean circulation. Solutions which are compounded of a 
geostrophic drift plus boundary induced flow which is not entirely confined to 

In our previous calculations (Robinson 1963, p. 160) for tho case p = 0.5, x = 0, tho 
lowest eigenvalue was missed and it was incorrectly concludod that a boundary current, 
could exist. 
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the boundary regions (one or a few eigenfunctioiis may oscillate and the others 
exponentially decay) may play a significant role in the total circulation. 
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